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Abstract

Recent advancements in Large Vision-Language Mod-
els (LVLMs) have demonstrated impressive capabilities in
generating visual-text alignments and performing complex
vision-language tasks. However, most LVLMs struggle
with fine-grained attribute localization, which is essential
for precise visual grounding in applications such as fine-
grained visual classification. In this work, we propose
a novel framework that utilizes dual-scale attention maps
to improve fine-grained attribute grounding. By combin-
ing coarse-grained and fine-grained attention maps, our
approach captures both general object-level and detailed
attribute-specific information. Additionally, we introduce
an attention amplification mechanism that selectively en-
hances model focus on regions corresponding to target at-
tributes, such as color or texture. Our method is evaluated
across the Caltech-UCSD Birds-200-2011 dataset, showing
that the dual-scale approach and targeted amplification sig-
nificantly improve attribute localization accuracy, achiev-
ing higher modified point in region scores.

1. Introduction

There has been a notable increase in interest and ad-
vancement in Large Vision-Language Models (LVLMs), ca-
pable of generating text grounded in images. Models like
InstructBLIP [9], LLaVA [23], and CogVLM [35] have
demonstrated impressive zero-shot performance in gener-
ating image captions, conducting visual reasoning, pro-
ducing textual descriptions and solving complex question-
answering tasks. The strong results observed across various
benchmarks suggest that these models, primarily based on
large language models (LLMs) such as Vicuna [7], Flan-
T5 [8], and Llama [33], are well-equipped to exploit the
relationship between the textual knowledge gained during
pre-training and the image understanding developed during
instruction tuning. Additionally, these models display ro-
bust zero-shot transferability to a wide range of downstream
tasks.

Given the visual-text reasoning and understanding ca-
pabilities of Large Vision-Language Models (LVLMs), an

important question arises: Can the knowledge acquired by
these models during large-scale training be utilized to lo-
calize or ground textual descriptions of fine-grained at-
tributes with the corresponding visual pixel space? Recent
studies, such as VLM4Bio [24] and Finer [19], have ex-
plored the ability of general-purpose LVLMs to ground or
classify the presence of fine-grained attributes in images.
These studies demonstrate that while LVLMs perform well
with coarse-grained objects, such as birds, they struggle to
ground or identify fine-grained attributes accurately.

In contrast, traditional research in fine-grained visual
classification (FGVC) [5, 15] has placed emphasis on ac-
curately classifying a wide variety of images, encompass-
ing species of birds, plants, animals, and artificial objects
like cars. FGVC poses a greater challenge because it re-
quires the recognition of subtle distinctions in images, such
as variations in eye shape, flipper morphology, and tail col-
oration among birds [13,14]. A significant challenge for vi-
sual models is the precise localization of these fine-grained
attributes.

In this work, we focus on LVLMs, specifically LLaVA,
which demonstrate a strong zero-shot performance for
coarse-grained tasks such as captioning or question answer-
ing. However, it is observed that their ability to local-
ize fine-grained attributes, such as specific colors, textures,
and shapes, remains limited. We hypothesize that although
these models may possess latent grounding capabilities,
their current structure often fails to localize fine-grained
attributes precisely. To address this, we propose a novel
framework that leverages both coarse-grained and fine-
grained attention maps to analyze whether attention maps
produced by LVLMs can implicitly ground fine-grained at-
tributes across multiple scales.

Prior approaches like Finer and VLM4Bio mainly focus
on the generated token space to identify modality gaps. Fur-
thermore, approaches such as VL-SAM [22] demonstrate
that attention maps from LVLMs can be leveraged to ground
coarse-grained objects in images. VL-SAM also uses atten-
tion maps from generated tokens to the visual tokens. We go
beyond this by analyzing the attention maps from different
layers and heads for fine-grained grounding.

Contributions: Our contributions are three-fold:
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1. We demonstrate that specific attention maps fail to at-
tend to the expected regions and propose a selection
strategy that combines entropy-based filtering with
maximally connected component filtering. This ap-
proach results in a more meaningful collection of at-
tention maps for fine-grained grounding.

2. We introduce a method that integrates coarse-grained
attention rollout with fine-grained attention maps using
element-wise multiplication. This integration high-
lights fine-grained regions, suppresses irrelevant areas,
and enhances focus on salient details.

3. We enforce a hierarchical constraint that ensures fine-
grained objects (e.g., ”eye”) are localized within their
corresponding coarse-grained objects (e.g., ”bird”),
improving the consistency of attention maps.

2. Related Work
Recent advances in Vision-Language Models (VLMs)

have significantly improved the ability to understand and
align visual and textual information. Foundational mod-
els like CLIP [29] and ALIGN [18] have achieved robust
vision-language representations through large-scale pre-
training. These early models were further enhanced with ar-
chitectures like UNITER [6] and VinVL [40], which lever-
age object-semantics alignment for nuanced understanding.
Oscar [21], in particular, introduced object-level seman-
tics to enhance model comprehension of specific visual at-
tributes.

2.1. General-purpose Large Vision Language Mod-
els

Models like LLaVA [23] and Instruct-BLIP [9] demon-
strate strong zero-shot performance across various vision-
language tasks, such as Visual Question Answering (VQA),
reasoning, and image captioning. These models gener-
ate outputs informed by learned representations and image
analysis, enabling coherent reasoning. Despite these ca-
pabilities, fine-grained object identification remains a chal-
lenge. Recent work, such as Finer [19], identifies a modality
gap in these models’ ability to detect fine-grained attributes.
Similarly, VLM4Bio [24] tested these models using bound-
ing boxes, highlighting their limitations in grounding tasks.
Also, [28] present KOSMOS-2, a multimodal model that
leverages grounded image-text pairs to enhance phrase
grounding, VQA, and captioning tasks, marking a step to-
ward more integrated multimodal systems. These findings
suggest that most general-purpose LVLMs lack fine-tuning
for fine-grained attribute grounding.

2.2. LVLMs with Grounding Abilities

Recent LVLMs like CogVLM2 [17], GLAMM [30], and
MoLMO [10] have advanced grounding abilities for textual

phrases within images. CogVLM2, for instance, is trained
on the LAION-40M-grounding dataset [31], which includes
bounding box annotations, allowing for improved object
localization. GLAMM has been specifically instruction-
tuned to map text phrases to pixel locations, while MoLMO
utilizes landmark points to enhance object identification
within pixel space. However, these models have yet to
be comprehensively evaluated for fine-grained attribute
grounding.

2.3. Multi-Scale Attention Mechanisms

In multi-scale attention research, VL-SAM provides a
training-free approach that combines generalized object
recognition and localization models using attention maps
as prompts for segmentation. As observed in VL-InterpreT
[2], early attention layers produce broad, diffused maps,
which become more specific in later layers. Additionally,
Chefer et al. [4] indicate that deeper layers convey more
semantic information, which aligns with the dual-scale ap-
proach of capturing both general and specific features.

DUAL ATT-NET [37] introduces hard and soft attention
mechanisms, enhancing fine-grained recognition in few-
shot scenarios. Sun et al. [32] propose Multi-scale Attention
Fusion, which integrates local and global features through
a dual-stream network. Ouyang et al. [27] further refine
multi-scale attention in the Efficient Multi-Scale Attention
(EMA) module by capturing both short- and long-range de-
pendencies, improving spatial understanding.

2.4. Visual Grounding

In visual grounding, [16] introduce Parameter-efficient
Fine-tuning for Medical Visual Grounding (PFMVG), a
two-stage fine-tuning process for medical image captioning
and grounding. Bhowmik et al. [3] utilize a Dual Mixture of
Experts (MoE) to balance grounding with image-language
comprehension. Rasheed et al. [30] develop GLaMM,
which achieves dense, pixel-level grounding using a hier-
archical feature extraction framework. VideoGLaMM [26]
expands this approach to video grounding by using a spatio-
temporal pixel decoder, generating object masks based on
user queries.

2.5. Fine-Grained Visual Grounding

HiVG, proposed by [36], is a hierarchical multimodal
framework that bridges visual and linguistic features for
fine-grained visual grounding. Using adaptive cross-modal
bridges, HiVG improves cross-modal alignment, achieving
superior results across benchmarks. ViGoR by [38] en-
hances grounding in LVLMs with fine-grained reward mod-
eling, incorporating feedback to reduce visual hallucina-
tions and improve grounding accuracy. Dey et al. [12] pro-
pose AsphaltNet, a 3D grounding model utilizing offset and
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span losses to promote verbo-visual fusion for accurate ob-
ject localization.

Furthermore, [30] advance fine-grained visual percep-
tion with ”AnyRef,” an MLLM model capable of generat-
ing pixel-level segmentations across modalities. Kirillov et
al. [20] introduce a framework for progressively capturing
multi-granular features, while [39] propose MMAL-Net, a
multi-branch, multi-scale model that achieves fine-grained
categorization without bounding box annotations.

2.6. Attention Flow in Transformers

Abnar et al. [1] introduced attention rollout and atten-
tion flow, techniques that model the network as a directed
acyclic graph to quantify token contributions across layers.
While attention rollout computes cumulative contributions,
attention flow uses a max-flow algorithm to measure to-
ken influence, addressing the limitations of raw attention
weights. Furthermore, Metzger et al. [25] extended this
concept to general Transformer architectures, linking atten-
tion flow to Shapley value computations for measuring to-
ken impact while ensuring positional independence in auto-
regressive decoders. DeRose et al. [11] further developed
a visual analytics tool, Attention Flows, to trace attention
dynamics and compare pre-trained and fine-tuned models,
providing insights into how attention adapts to downstream
tasks.

3. Methodology

The proposed methodology utilizes the LLaVA model
to enhance the localization of fine-grained visual attributes
by analyzing and refining the attention mechanisms within
the Large Vision Language Model. As illustrated in fig-
ure 1, the input to LLaVA consists of a structured sequence
that begins with a system-defined prompt, followed by vi-
sual tokens, and culminating with textual query tokens.
These visual and textual tokens are projected into a common
representational space, enabling self-attention mechanisms
across the LLM layers. By leveraging the self-attention in-
teractions between the textual query tokens and the visual
tokens, we extract attention maps that form the basis of our
analysis. Our methodology involves a rigorous two-stage
filtering process that refines these attention maps, focusing
on head selection and layer-wise aggregation to improve the
precision of fine-grained attribute localization in images.

3.1. Head Selection and Aggregation (HSA)

As seen from the initial findings in Figure 5, different
heads capture different aspects and compute attention dif-
ferently, resulting in certain heads not localizing (i.e. dis-
persed attention maps) correctly with the give query object.
Therefore, we propose a mechanism to select the most in-
formative attention maps. We hypothesize that an ideal at-

Figure 1. Input to LLaVA consists of a structured sequence that
begins with a system-defined prompt, followed by visual tokens,
and culminating with textual query tokens.

tention map would have high attention points clustered to-
gether.

In HSA, we implement a two-stage filtering process
(shown in figure 2) to enhance the attention maps at every
layer of the LVLM, elaborated further in the below subsec-
tions.

Figure 2. Entropy based filtering across heads followed by maxi-
mally connected component selection. Finally union is performed
among the remaining attention heads

3.1.1 Entropy-based Filtering

Entropy is used to measure the randomness or dispersion in
attention maps. Low entropy usually signifies that attention
is concentrated in a small number of regions or elements,
indicating focused attention. High entropy indicates that at-
tention is spread across many regions or elements. Entropy
(1) can be represented as,

H(X) = −
∑
i

p(xi) log p(xi) (1)

where, H(X) represents the entropy of the random vari-
able X, p(xi) is the probability of the ith state or outcome
in the distribution of X

We use entropy to filter out attention heads that show
high entropy values, indicating that their attention is too dis-
persed to be effective for precise localization. This leaves
us with maps with more focused attention.
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Figure 3. Layer aggregation and hierarchical constraint enforce-
ment

The approach is implemented by computing a normal-
ized entropy score which measures the spread of values in
the attention map. If this score is less than a certain thresh-
old, the attention map is filtered out.

3.1.2 Maximally-Connected Component filtering

In the second stage of our filtering pipeline, we em-
ploy Maximally Connected Component-Based Filtering. A
Maximally Connected Component (MCC) in an attention
map can be defined as a subset of the map where every pair
of nodes (pixels or regions with high attention scores) is
connected directly or indirectly and which is not part of a
larger connected cluster. This approach helps to identify the
largest clusters within the attention maps, focusing on those
components that are densely connected (noisy regions usu-
ally do not have large clusters).

The compactness of the cluster is computed by calcu-
lating the ratio of the size of the largest connected com-
ponent to the total number of active pixels on the binary
map. A higher compactness value suggests that the largest
connected component occupies is dense, and a lower value
indicates that attention is weakly spread across the regions,
hence, filtered out.

Post-MCC filtering, we take a max of the remaining at-
tention maps to get the final attention map for a give layer.
We perform a union over the remaining attention maps in-
stead of averaging them out, as less activated regions reduce
the effective attention scores of the highly activated regions
if averaged.

3.2. Layer Aggregation

Once we select the best attention heads in every layer,
we perform a head aggregation across all layers using the
Layer Aggregation module. First, we compute the attention
flow of the coarse-grained tokens across all layers. Then,
the rolled-out attention flow is used to aggregate the fine-
grained attention maps via an overlapping constraint. Fig-
ure 3 shows an illustration of this process.

3.2.1 Coarse-grained attention flow

We compute the attention flow of the coarse-grained tokens,
which is consequently used to guide the aggregation of the
attention maps of the fine-grained attention maps. However,
this is based on the assumption that the coarse-grained maps
generated are correct. The attention flow is computed using
rollout.

The attention rollout R for coarse-grained flow is com-
puted iteratively across all layers of the Transformer. Let L
denote the total number of layers, and A(l) ∈ Rn×n repre-
sent the aggregated coarse-grained attention matrix at layer
l, where n is the number of tokens. The computation is ini-
tialized with the identity matrix I ∈ Rn×n, which preserves
the direct contributions of each token. The attention rollout
R is expressed as shown in Equation 2.

R =

L∏
l=1

(
I +A(l)

)
(2)

where I+A(l) accounts for both the residual connections
(via I) and the attention contributions from layer l. The iter-
ative product ensures that the flow of attention from earlier
layers is propagated through subsequent layers, capturing
the cumulative coarse-grained attention distribution.

Starting with the coarsest layer, we progressively com-
bine the attention scores using an attention rollout tech-
nique, where each layer’s output is fed as an input to the
next, accumulating a composite map that represents an in-
creasingly refined focus on relevant visual features. The
rollout helps in understanding how general features (like the
shape of a bird) are gradually refined into specific attributes
(like the texture of feathers)

3.2.2 Hierarchically Constrained Aggregation

This step introduces a hierarchical constraint that ensures
that fine-grained attention regions are always within the
bounds of the relevant coarse-grained regions identified in
the previous step. The constraint is based on the premise
that attributes (such as the eye of a bird) should logically
occur within specific broader regions (like the head of the
bird).

Using the coarse-grained attention maps as a guide, we
apply a masking technique where the fine-grained attention
maps are element-wise multiplied by the coarse-grained
maps. This operation ensures that attention for fine-grained
features does not stray outside the relevant coarse-grained
areas, thereby enhancing the precision of the localization.

To enforce hierarchical constraints, the rollout R is used
as a coarse-grained mask, ensuring that fine-grained atten-
tion maps remain spatially bounded within the regions iden-
tified by R.
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Wi = Normalize(A′
fine ◦R) (3)

where,

A′
fine : Fine-grained token’s attention map for layer l
R : Coarse-grained attention rollout
◦ : Element-wise multiplication

Afinal =
∑
i

Wi ·A′
fine (4)

For every layer, we obtain a normalized fine-grained at-
tention map weight(3), which is then used to perform a
weighted summation of all attention maps across all the lay-
ers to get the final map (4).

4. Experiments

4.1. Datasets

We selected a richly annotated dataset with diverse sam-
ples within a given animal class to evaluate our proposed
method for fine-grained attribute grounding. These datasets
are chosen to ensure rigorous testing of our approach’s fine-
grained grounding capabilities. The datasets used in this
study include the Caltech-UCSD Birds-200-2011 (CUB-
200-2011).

4.1.1 CUB-200-2011

The Caltech-UCSD Birds-200-2011 (CUB-200-2011) [34]
dataset consists of 11,788 images representing 200 bird
species, each annotated with bounding boxes, part loca-
tions, and 312 binary attributes grouped into 28 cate-
gories. These annotations enable precise evaluations of
part-based detection, attribute recognition, and fine-grained
classification. The dataset’s hierarchical structure organizes
species by scientific taxonomy—order, family, genus, and
species—and links each to a corresponding Wikipedia arti-
cle for additional contextual details.

Each image in the dataset is annotated with a bound-
ing box that specifies the spatial extent of the bird, facil-
itating object localization tasks. Additionally, the dataset
provides pixel-level annotations for 15 body parts, such as
the beak, wing, and tail, which were determined using the
median position of five different Mechanical Turk workers.
These part locations serve as critical ground truth for part-
based localization experiments. Furthermore, 312 binary
attributes—such as ”wing color: red” and ”bill shape: cone-
shaped”—are grouped into 28 categories, enabling detailed
attribute-based classification and recognition tasks.

The dataset also presents diverse statistical characteris-
tics. Images were collected from Flickr and manually cu-
rated to ensure quality and relevance. Class distributions
are approximately balanced, with most bird species repre-
sented by around 60 images. The average image resolu-
tion is approximately 500×500 pixels, with annotated bird
regions occupying varying frame proportions. This diver-
sity in pose, lighting, and background introduces significant
challenges, as does the subtle visual similarity across some
bird species.

4.2. Evaluation Metrics

Since the CUB-200-2011 consists of key points for dif-
ferent bird parts, we use a modified point-in-region metric
to calculate the accuracy of the localized region. Point-in-
region has a binary value, where the value is 1 if the key
point lies within the predicted region; otherwise, it is 0. This
could lead to extremely high accuracies in the case of very
large predicted regions. Since we want compact regions,
we add an additional score to penalize large regions. We
follow the equation 1 to add a score to the existing point in
the region score.

mPIR =

{
1
PA

, if predicted region overlaps with the keypoint
0, else.

(5)
where mPIR is the modified point in region and PA

refers to the area of the predicted region.

4.3. Results

In this section we present our layer-wise attention maps
which show attention distribution across layers and results
that demonstrate the function of the head selection and ag-
gregation module and the layer aggegation.

4.3.1 Intermediate and Final layers

In the intermediate and final layers, attention does tend to
concentrate around fine-grained attributes, such as the beak
of a bird. However, the highest attention often peaks out-
side the actual attribute region and, in many cases, even falls
outside the boundary of the coarse-grained object (e.g., out-
side the bird). As shown in figure 4, the regions with the
highest attention (highlighted in red) frequently miss the at-
tribute of interest. This drift suggests that while deeper lay-
ers start to capture attribute-specific details, they do not yet
fully align with the precise localization required for fine-
grained grounding.

4.3.2 Early Layers

The attention in the first few layers is notably diffuse and
appears haphazard, which aligns with the model’s tendency
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Figure 4. Attention maps from intermediate and final layers

Figure 5. Attention from the word ”bird” to image for layer 10 of LLaVA

Figure 6. Attention maps from initial layer
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(a) Attention maps selected by the HSA module for ”head” (b) Attention filtered out by the HSA module

Figure 7. Attention maps processed by the HSA module

Figure 8. Outputs from layer aggregation for different queries

to incorporate broad contextual information at early stages.
As seen in figure 6, attention in these initial layers lacks a
coherent focus on specific objects or attributes. Given this
observation, disregarding attention from the early layers is
beneficial when localizing fine-grained attributes, as their
role is more suited to establishing general context rather
than precise localization.

4.3.3 Head Selection and Aggregation

The HSA picks out the most informative attention maps
for a given layer and aggregates them into a final attention
map. We set an entropy threshold of 0.8 and a compactness
threshold of 0.5. The minimum threshold value for pixel
to be considered as active is set at 0.05. Figure 7a shows
the selected attention maps by the HSA module. It can be
observed that selected maps consist of high attention pixels

aggregated together. Figure 7b shows the attention maps fil-
tered out by the HSA module. It can be seen that attention
maps where high attention pixels are distributed throughout
the image are filtered out.

4.3.4 Layer aggregation

The layer aggregation module gives the final localized re-
gions on fine-grained attributes. The resulting outputs from
the layer aggregation for different queries is shown in figure
8. The performance is relatively high for attributes like the
head, leg and tail. However, for finer-grained attributes such
as the eye and the beak, which fall within the head, we tend
to get regions that are not localized enough. For body parts
like the back, wing and the belly, we get localized regions
over the body parts.
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Table 1. Comparison of attribute localization scores obtained us-
ing VL-SAM* and our proposed method. Our method demon-
strates significantly higher scores across all attributes, indicating
improved localization ability.

Attribute Score using
VL-SAM*

Score using
our method

beak 4.09 10.12
belly 3.76 7.53
breast 3.81 8.00
head 3.96 9.45
wing 3.19 6.90
eye 4.21 10.73
tail 3.75 7.61

throat 4.15 9.81
back 3.62 6.97
leg 3.88 8.82

5. Limitations and Future Work

While our framework demonstrates progress in lever-
aging LVLMs for fine-grained grounding, several limita-
tions remain. Quantitative evaluation relies on an approx-
imate scoring scheme, which, while informative, lacks the
rigor of standardized metrics. Additionally, manual anno-
tation for fine-grained segmentation is resource-intensive
and limits scalability. Our method focuses primarily on
aggregating informative attention heads, leaving spurious
attention peaks unaddressed and failing to amplify con-
nected attention regions for better spatial coherence. More-
over, the attention maps are not refined as 2D distributions,
where lower-variance modes (disconnected regions) could
be dampened, and higher-variance modes (connected re-
gions) sharpened. These gaps may lead to noisy attention
outputs, particularly for fine-grained traits requiring precise
localization.

To address these limitations, future work will focus on
improving the robustness and scalability of the framework.
We plan to develop a fine-grained segmentation dataset
based on the CUB-200-2011 dataset, leveraging annotated
keypoints as spatial prompts for models like SAM. Ad-
ditionally, refining attention maps by suppressing spuri-
ous peaks and amplifying connected regions will improve
spatial precision. This involves treating attention maps
as 2D distributions and using techniques like variance-
based sharpening and temperature softmax. Another av-
enue involves modifying visual token attention scores di-
rectly within LLM layers to assess their impact on token
generation and trait localization.

We also aim to extend the framework to other LVLMs,
evaluating its generalizability and effectiveness compared
to models explicitly trained for localization or segmenta-

tion, such as GLAMM (CVPR 2024). Preliminary analy-
ses suggest that GLAMM struggles with fine-grained seg-
mentation, providing an opportunity to further establish our
method’s strengths. By addressing these limitations, we aim
to enhance LVLMs’ ability to describe and localize subtle
visual attributes with greater precision and reliability.

6. Conclusion
In this work, we presented a framework to improve

fine-grained grounding in Large Vision-Language Models
(LVLMs), which excel at coarse-grained tasks but strug-
gle with fine-grained attribute localization. By integrating
coarse- and fine-grained attention maps, we enhanced atten-
tion consistency and spatial focus through entropy-based fil-
tering and hierarchical constraints. Our approach advances
LVLMs’ ability to localize fine-grained attributes, provid-
ing insights into improving attention mechanisms. In fu-
ture work, we aim to address current limitations, extend the
framework to other LVLMs, and evaluate its effectiveness
on state-of-the-art localization models, ultimately enhanc-
ing LVLMs’ precision in fine-grained reasoning tasks.
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