
➢ PgDNO maintain 
consistent 
performance 
advantage even with 
limited (3%) 
observation data, 
particularly on Darcy 
Flow problems
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Motivation

➢ PDEs are fundamental to modeling physical 
phenomena but often computationally 
expensive to solve

➢ ML approaches can provide fast 
approximations to PDE solutions after 
training

Limitations of prior works:
➢ FNOs require uniform grids → can’t easily 

handle irregular domains or arbitrary sensor 
locations

➢ Real-world measurements are sparse & noisy 
→ purely deterministic operators struggle 
with uncertainty

Advantages of using Diffusion Models:

➢ Resolution-agnostic super-resolution
➢ Naturally handle multiple solutions for ill-

posed inverse problems 
➢ Provide flexible conditional generation 

capabilities
➢ Uncertainty quantification via sampling 

ensembles

➢ Integrating spectral neural operators with diffusion model to capture global 

physical dependencies

➢ PDE-informed regularization directly in spectral space during training and 

sampling

➢ Model learns to maintain physical consistency

➢ Noise-Residual Gating to fuse the current diffusion noise level with spectral residual 

➢ PgDNO-RFA: Frequency based PDE residual attention in the spectral domain

➢ PgDNO Concat: RFA + PDE residual concatenated to Diffusion model input
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Preliminary Findings: Results

Key Highlights

➢ PgDNO models achieve competitive results with only 18 steps vs 2000 steps for comparable diffusion models (100x speedup)
➢ On full observations, PgDNOHybrid matches or exceeds FunDPS (2000) while PgDNORFAL shows specialized strength on 

Helmholtz problems
➢ All PgDNO variants outperform traditional neural operators (FNO, PINO, DeepONet, PINNs) on forward problems
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Future Work

Full Observations FWD

Sparse Observations

➢ Extend the physics-guided diffusion neural operator to handle 
spatio-temporal domain

➢ Improve model performance under extremely sparse 
observations by incorporating advanced uncertainty 
quantification and adaptive sampling techniques

➢ Addressing spectral instabilities during training by developing 
regularization techniques specifically tailored for Fourier-based 
operators

➢ Investigating the complex loss landscapes that emerge from the 
interaction between physical constraints and frequency domain 
operations

➢ Current diffusion-based PDE solvers require 
hundreds to thousands of denoising steps

➢ Existing solvers typically inject PDE residuals in 
pixel/pointwise form—lacking multi-scale or 
global spectral enforcement, which can miss 
long-range physical dependencies.

➢ Under very sparse or noisy measurements, 
current models can produce unstable, non-
physical artifacts and lack principled 
uncertainty quantification.

Why Diffusion Models?

Challenges

Physics-guided Diffusion Neural Operators
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