Physics-guided Diffusion Neural Operators for Solving Forward and Inverse PDEs

Medha Sawhney¹, Abhilash Neog¹, Mridul Khurana¹, Amartya Dutta¹, Arka Daw², Anuj Karpatne¹ ¹Virginia Tech, ²Oak Ridge National Lab

Sparse Observations

Motivation

- > PDEs are fundamental to modeling physical phenomena but often computationally expensive to solve
- ML approaches can provide fast approximations to PDE solutions after training

Why Diffusion Models?

Limitations of prior works:

- ➤ FNOs require uniform grids → can't easily handle irregular domains or arbitrary sensor locations
- > Real-world measurements are sparse & noisy → purely deterministic operators struggle with uncertainty

Advantages of using Diffusion Models:

- Resolution-agnostic super-resolution
- ➤ Naturally handle multiple solutions for illposed inverse problems
- Provide flexible conditional generation capabilities
- Uncertainty quantification via sampling ensembles

Challenges

- Current diffusion-based PDE solvers require hundreds to thousands of denoising steps
- > Existing solvers typically inject PDE residuals in pixel/pointwise form—lacking multi-scale or global spectral enforcement, which can miss long-range physical dependencies.
- Under very sparse or noisy measurements, current models can produce **unstable**, **non**physical artifacts and lack principled uncertainty quantification.

Physics-guided Diffusion Neural Operators PHYSICS-GUIDED DIFFUSION NEURAL **OPERATOR** DIFFUSION MODEL SPECTRAL CONVOLUTION BLOCK RESIDUAL ATTENTION \sim F(x) \sim $\sim\sim\sim$ ~~~~ F(PDE $\sim\sim$ RES) $\sim\sim$

Key Highlights

- > Integrating spectral neural operators with diffusion model to capture global physical dependencies
- > PDE-informed regularization directly in spectral space during training and sampling
- Model learns to maintain physical consistency
- > Noise-Residual Gating to fuse the current diffusion noise level with spectral residual
- > PgDNO-RFA: Frequency based PDE residual attention in the spectral domain
- > PgDNO Concat: RFA + PDE residual concatenated to Diffusion model input

Preliminary Findings: Results

Model	Steps	Darcy (Fwd)	Darcy (Inv)	Poisson (Fwd)	Poisson (Inv)	Helmholtz (Fwd)	z Helmholtz (Inv)	PgDNO maintain
FunDPS	200	2.88%	6.78%	2.04%	24.04%	2.20%	20.07%	•
FunDPS	500	2.49%	5.18%	1.99%	20.47%	2.13%	17.16%	consistent
DiffusionPDE	2000	6.07%	7.87%	4.88%	21.10%	12.64%	19.07%	performance
FNO	_	28.2%	49.3%	100.9%	232.7%	98.2%	218.2%	.
PINO	_	35.2%	49.2%	107.1%	231.9%	106.5%	216.9%	advantage even w
DeepONet	_	38.3%	41.1%	155.5%	105.8%	123.1%	132.8%	
PINN		48.8%	59.7%	128.1%	130.0%	142.3%	160.0%	limited (3%)
$PgDNO_{Hybrid}$	18	2.50%	7.40%	4.90%	_	6.00%	_	observation data,
$PgDNO_{RFA}L$	18	2.80%	20.0%	5.40%	3.90%	13.0%	80.0%	particularly on Da
$PgDNO_{RFA}S$	18	6.35%	7.00%	3.99%	_	6.70%	36.0%	Flow problems

consistent performance advantage even with 🖔 limited (3%) observation data, particularly on Darcy ? Flow problems

better. RFA = Residual Frequency Attention; L = Large, S = Small.

Model	Steps	Darcy (Fwd)	Darcy (Inv)	$\begin{array}{c} \mathbf{Poisson} \\ \mathbf{(Fwd)} \end{array}$	$\begin{array}{c} {\bf Poisson} \\ {\bf (Inv)} \end{array}$	$egin{aligned} \mathbf{Helmholtz} \\ \mathbf{(Fwd)} \end{aligned}$	Helmholtz (Inv)
PINO		4.00%	2.1%	3.70%	10.2%	4.9%	4.9%
DeepONet		12.3%	8.4%	14.3%	29%	17.8%	28.1%
PINNs		15.4%	10.1%	16.1%	28.5%	18.1%	29.2%
FNO		5.3%	5.6%	8.2%	13.6%	11.1%	5.0%
DiffusionPDE	2000	5.98%	14.5%	15.27%	21.21%	10.9%	18.97%
FunDPS	200	1.1%	4.2%	-	-	-	-
FunDPS	500	1.4%	3.0%	-	-	-	-
FunDPS	2000	0.9%	2.1%	-	-	-	-
$PgDNO_{Hybrid}$	18	0.9%	3.67%	4.65%	10.9%	5.74%	9.8%
$PgDNO_{RFA}L$	18	1.73%	5.0%	5.9%	10.3%	2.1%	9.9%
$PgDNO_{RFA}S$	18	5.8%	5.0%	3.4%	13.2%	6.0%	14.7%

Table 2: Comparison of different models on PDE problems (in ℓ_2 relative error) on Full Observation Data. Green: least value; Yellow: second-least; Red: highest (worst). Lower is better. RFA = Residual Frequency Attention; L = Large, S = Small.

Full Observations FWD

- > PgDNO models achieve competitive results with only 18 steps vs 2000 steps for comparable diffusion models (100x speedup)
- > On full observations, PgDNOHybrid matches or exceeds FunDPS (2000) while PgDNORFAL shows specialized strength on Helmholtz problems
- > All PgDNO variants outperform traditional neural operators (FNO, PINO, DeepONet, PINNs) on forward problems

Future Work

Extend the physics-guided diffusion neural operator to handle spatio-temporal domain

- > Improve model performance under extremely sparse observations by incorporating advanced uncertainty quantification and adaptive sampling techniques
- > Addressing spectral instabilities during training by developing regularization techniques specifically tailored for Fourier-based operators
- > Investigating the complex loss landscapes that emerge from the interaction between physical constraints and frequency domain operations

Full Observations INV

