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» PDEs are fundamental to modeling physical
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» Naturally handle multiple solutions for ill-
posed inverse problems

» Provide flexible conditional generation
capabilities

» Uncertainty quantification via sampling
ensembles

Challenges Key Highlights

Table 2: Comparison of different models on PDE problems (in /2 relative error) on Full Observation
Data. Green: least value; . second-least; Red: highest (worst). Lower is better. RFA =
Residual Frequency Attention; L = Large, S = Small.
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» PgDNO models achieve competitive results with only 18 steps vs 2000 steps for comparable diffusion models (100x speedup)

» On full observations, PeDNOHybrid matches or exceeds FunDPS (2000) while PeDNORFAL shows specialized strength on
Helmholtz problems

» All PeDNO variants outperform traditional neural operators (FNO, PINO, DeepONet, PINNs) on forward problems
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uncertainty quantification. interaction between physical constraints and frequency domain

» PgDNO Concat: RFA + PDE residual concatenated to Diffusion model input operations
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