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1 Introduction

Physics-informed neural networks (PINNs) are a class of machine learning mod-
els that combine neural networks with knowledge of the underlying physics gov-
erning a system. These models are particularly useful in situations where data
is scarce or expensive to obtain, but there exists a known set of physical laws
or equations that describe the behavior of the system.

The key idea behind PINNs is to embed the governing physical equations into
the neural network architecture during the training process. This is achieved
by incorporating the partial differential equations (PDEs) that represent the
physics of the system as part of the loss function during the training of the
neural network. In other words, the neural network is not only learning from
the available data but is also constrained to satisfy the fundamental laws of
physics.

Partial differential equations describe the relationship between a function
and its partial derivatives with respect to one or more independent variables.
They are commonly used to model physical phenomena in various fields, includ-
ing physics, engineering, and finance.

A general form of a PDE can be written as:

F (u,
∂u

∂x
,
∂u

∂y
,
∂2u

∂x2
,
∂2u

∂y2
, . . .) = 0

Here, u is the unknown function, and ∂u
∂x ,

∂u
∂y ,

∂2u
∂x2 ,

∂2u
∂y2 , . . . are its partial

derivatives with respect to one or more independent variables (e.g., x and y).
In the context of PINNs, the idea is to incorporate the PDEs directly into

the training process of a neural network. The loss function for training the
neural network is composed of two main components:

1. Data-Driven Loss: This component ensures that the neural network
fits the available data.

2. Physics-Informed Loss: This component enforces the neural network
to satisfy the governing PDEs by penalizing deviations from the equations.
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The formulation of the combined loss function of a Physics-Informed Neural
Network (PINN) is given by:

Ltotal = Ldata + ·Lphysics (1)

The data-driven loss term (Ldata) is defined as:

Ldata =

Ndata∑
i=1

(û(xi, ti)− uobserved(xi, ti))
2

(2)

And the physics-informed loss term (Lphysics) is defined as:

Lphysics =
1

Nphysics

Nphysics∑
i=1

(PDEi)
2

(3)

Here, û(xi, ti) is the predicted solution, uobserved(xi, ti) is the observed so-
lution, PDEi represents the residual of the i-th partial differential equation
(PDE) at a specific location and time, and λ is a hyperparameter controlling
the weighting between the data-driven and physics-informed terms.

The combined loss function is minimized during training, leading to a neural
network that not only accurately represents the observed data but also adheres
to the underlying physical principles described by the PDEs.

By integrating knowledge of physics into the training process, PINNs can be
powerful tools for making predictions in scenarios where limited data is avail-
able, and the underlying physical laws are well-defined. This approach has
applications in fluid dynamics, heat transfer, structural mechanics, and other
fields where PDEs govern the system behavior.

Related to the forward problem is the inverse problem. Solving inverse prob-
lems involving partial differential equations (PDEs) is a challenging and impor-
tant task in various scientific and engineering applications. Inverse problems in
the context of PDEs generally involve estimating the input or PDE parameters
given observed output data. Physics-Informed Neural Networks (PINNs) have
emerged as a promising approach for solving inverse problems related to PDEs.
In the context of PINNs for inverse problems, the neural network is trained not
only on the available data but also on the governing PDEs that describe the
physical system. This allows the network to learn the PDE parameters while
simultaneously fitting the observed data.

2 Problem Statement

The inverse PDE problem, despite being an important and impactful problem
suffers from certain limitations. The primary issue is the difficulty in converging
the physics-informed loss, which enforces the satisfaction of partial differential
equations (PDEs). This is a common challenge when training Physics-Informed
Neural Networks (PINNs) in general and not specific to the inverse problem.
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It can be attributed to several factors, and addressing these issues may help
improve the convergence of the physics-informed loss.

So, the goal of this project is to analyse the convergence of the PINN loss
function under the inverse problem setting and consider techniques that can
potentially improve the convergence problem.

In this project, we primarily focus on weighing the loss terms during training.
The idea is that, since the data-driven loss converges easily and the PDE loss
does not, we decrease the weight of the data-driven loss with training iterations
while increasing the weight of the PDE loss term.

3 Methodology

3.1 Optimization technique

In this project, we have used the L-BFGS (Limited-memory BFGS) optimization
algorithm, which is a variant of BFGS (Broyden-Fletcher-Goldfarb-Shanno) [1].
Both of them belongs to the family of quasi-Newton methods.

BFGS is an iterative optimization algorithm designed for unconstrained op-
timization problems. BFGS maintains an estimate of the inverse Hessian ma-
trix, which is an approximation to the second-order derivatives of the objective
function. At each iteration, BFGS updates the inverse Hessian approximation
based on the gradients of the objective function and the changes in the param-
eter space. It terminates when a convergence criterion is met, such as reaching
a specified tolerance in the gradient or achieving a specified tolerance in the
change of the objective function.

L-BFGS (or LFGS) is a variant of BFGS designed for large-scale optimiza-
tion problems. It is particularly useful when dealing with high-dimensional
parameter spaces. L-BFGS stores a limited memory of the past iterations,
making it more memory-efficient compared to the full BFGS. This limited-
memory approach is especially beneficial when dealing with large datasets or
high-dimensional problems. Moreover, instead of storing the full inverse Hes-
sian matrix, L-BFGS maintains a limited-memory approximation, which signifi-
cantly reduces the computational cost. The convergence criteria is same as that
of BFGS.

3.2 Training Data

The data used for training the PINNs is obtained from the data published in the
original PINN work [2]. In that work, the authors generate the PDE observed
data synthetically. They employ numerical simulations to obtain the training
data for the PINN.

The authors use standard numerical methods, such as finite difference or
finite element methods, to solve the given partial differential equations (PDEs)
numerically. These simulations provide a set of solutions at various points in
the spatio-temporal domain.
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The continuous PDEs are then discretized over a spatial and temporal grid.
The numerical solver is then used to compute the values of the solution at
discrete points within this grid. The values of the solution, as well as the
corresponding spatial and temporal coordinates, obtained from the numerical
simulations are used as the observed data for training the PINN. This dataset
includes pairs of input points (x, t) and the corresponding PDE solution u(x, t).

The PINN is trained using this dataset to learn the underlying physics and
approximate the solution to the PDE. The network is trained to minimize the
discrepancy between the predicted solution and the actual solution at the pro-
vided data points.

It’s important to note that the synthetic nature of the dataset allows the
PINN to learn the physics encoded in the PDE without requiring a large amount
of real-world data. This is a key advantage of PINNs, especially in scenarios
where obtaining real-world data might be expensive, impractical, or challenging.

3.3 Model training

3.3.1 Model architecture

PINNs are implemented as simple multi-layer neural networks. The input Layer
takes input features, (in case of Bugers equation, spatial and temporal coordi-
nates). The hidden layers comprise a series of densely connected layers with
activation functions, allowing the network to capture complex patterns. They
are followed by the output Layer, which produces predictions for the solution
variables.

3.3.2 Loss function

Loss comprise of two losses (as explained above). Data-Driven Loss measures
the discrepancy between the predicted solution and the observed data. Physics-
Informed Loss enforces the PDE residuals to be close to zero, ensuring that the
neural network respects the underlying physics.

3.3.3 Model Parameters and hyper-parameters

The parameters and hyper-parameters employed during training the PINNs are
as follows:

• Number of layers = 10

• Number of neurons in the hidden layers = 20

• Termination tolerance on first order optimality (gradient tolerance for
termination) = 1e-5

• Stepsize = 1.0

• Line search function = Strong wolfe
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4 Experiments and Analysis

In the experimentations, following equations are considered,

Burgers Equation

ut + uux − (0.01/π)uxx = 0, x ∈ [1, 1], t ∈ [0, 1]

u(0, x) = −sin(πx)

u(t,−1) = u(t, 1) = 0

So, the PDE, f(t, x) is defined as,

f := ut + uux − (0.01/π)uxx

where, u(t, x) is approximated by the deep neural network

l1, l2 in the experiments refer to 1 and 0.01/π respectively

Allen-Cahn Equation

ut − 0.0001uxx + 5u3 − 5u = 0, x ∈ [−1, 1], t ∈ [0, 1]

u(0, x) = x2cos(πx)

u(t,−1) = u(t, 1)

ux(t,−1) = ux(t, 1)

l1, l2 in the experiments refer to 0.0001 and 5 respectively

4.1 Without weighted loss

In this experiment, we consider the Burgers equation. The model almost con-
verges after 10000 iterations using LFGS, i.e. fits the function u(x,t) almost
perfectly. The loss is quite low. However, errors in parameter estimation is
quite high, indicating that the physics-guided loss function has not yet con-
verged

10000 Max Iterations
Error u: 9.207878e-02
Error l1: 25.01350%
Error l2: 23.93044%
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Figure 1: Loss curve with LFGS and no weighing (max 10k iterations)

Figure 2: Predicted and ground-truth parameters with max 10k iterations

50000 Max iterations
Error on u: 5.206837e-03
Error l1: 0.41518%
Error l2: 4.47659%

Figure 3: Loss curve with LFGS and no weighing (max 50k iterations)

Figure 4: Predicted and ground-truth parameters with max 50k iterations

From the above experiment, we can see that, while the neural network seems
to fit the function u almost perfectly after around just 10000 iterations, it is
still far away from estimating the actual parameters of the PDE. But, as we
increase the number of iterations from 10000 to 50000, both the losses seems
to be converging with the model predicting the PDE parameters relatively
more accurately. This confirms the hypothesis that both the loss functions do
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not converge simultaneously, and the loss on the u is not sufficient to
understand the convergence of PINNs on the inverse problem.
So, there are two questions here,

1. Number of iterations had to be increased from 10000 to 50000 to
actually reach the final convergence. How do we know what is an
optimal number of iterations here?

2. Since, one loss converge quickly, can we perform adaptive weighing of
losses? Or is a sequential training better?

4.2 With uniform weighted loss

In this experiment, we perform uniform weighted loss on the burgers equation
i.e. we increase and decrease the weight of both the loss term uniformly.
Following figure shows how the loss terms are varied with the iterations (in the
figure, we have considered 8000 iterations to visualize). The yellow curve is the
loss weight applied on the loss obtained fitting the function u and the blue line,
which is increasing, is applied on the loss defined for the PDE parameters.

Figure 5: Changing weights w.r.t iterations.

10000 Max iterations
Error u: 5.688636e-03
Error l1: 0.39384%
Error l2: 4.36655%
50000 Max Iterations
Error u: 4.666111e-03
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Figure 6: Loss curve with LFGS and loss weighing (max 10k iterations)

Figure 7: Predicted and ground-truth parameters with max 10k iterations

Error l1: 0.05592%
Error l2: 1.44720%

Figure 8: Loss curve with LFGS and loss weighing (max 50k iterations)

Figure 9: Predicted and ground-truth parameters with max 50k iterations

As seen above, with adequately weighing the loss terms, both loss functions
converge with a significant reduction in the parameter estimation errors for
10k iterations in the weighted case compared to the unweighted case.
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4.3 Results

The above experiments were conducted for a total of two equations (for max
10k iterations) - Burgers equation and Allen-Cahn equation. Table 1 captures
the respective performances

uloss l1loss l2loss
unweighted weighted unweighted weighted unweighted weighted

Burger 9.207878e-02 5.688636e-03 25.01350% 0.39384% 23.93044% 4.36655%

Allen-Cahn 2.610683e-01 2.668656e-01 98.01003% 2.00300% 1006.07452% 499.68213%

Table 1: Losses for Different Equations with max lfgs iterations=10k

4.4 Robustness to noise

We add some gaussian noise to the actual data and train the model on noisy
data to see if the model can learn under adversarial settings or not. We
evaluate for the both the cases - weighted and unweighted. The following table
records the results obtained on training the model for 10000 iterations (since
with 50k iterations the model anyway converges).

uloss l1loss l2loss
unweighted weighted unweighted weighted unweighted weighted

Burger 9.207878e-02 5.688636e-03 25.46611% 0.20681% 35.70578% 0.42538%

Allen-Cahn 2.610683e-01 2.668656e-01 2.00830% 2.28831% 499.54843% 499.70331%

Table 2: Losses for Different Equations trained on noisy data with max lfgs
iteration set to 10k

A very interesting observation during PINN training - the loss on noisy data
was significantly less compared to that of clean data. This raises multiple
questions,

1. Do PINNs converge better on noisy data? and why

2. Another relevant question here - can slightly noisy data resemble the
real-world better than the simulation data being used for training?

4.5 Sequential training

Does sequential training help? Is it better than performing loss weighing?
Sequential training basically refers to training the model in 2 stages - in the
first stage we try to train the model to fit the function u; in the second stage
we train the model to reduce the physics loss, i.e.

1. Stage 1: Train on data driven loss

2. Stage 2: Train on physics loss
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The hypothesis was that, joint training makes the model confused whether to
fit the function u or try to get the PDE parameters right. However, as the
experiment results on Burgers suggest, joint training is better than training
sequentially.
For the sequential training experiment, instead of the LFGS we use an Adam
Optimizer. The reason behind this is that, in this sequential case with LFGS,
we observed that the algorithm was terminating even before 5000 max
iterations were reached, hence, there was no difference in trying different
higher max iterations, say 10000.

Iterations (Stage 1, Stage 2) uloss l1loss l2loss
5000, 5000 8.205882e-03 97.55043% 27.55819%

10000, 10000 7.492132e-03 97.85362% 24.36492%

Table 3: Sequential training results. Values shown are obtained after the 2 stage
training

As can be seen from the table above, sequential training is significantly worse
than loss weighing. Although it was not tested on multiple equations, the fact
that we are getting poor results on a relatively simple equation suggests that
sequential training is not an efficient solution.

5 Discussion and Future work

1. Weighing helps in better convergence. In both the cases, Burgers and
Allen-Cahn, with weighing, the losses were significantly improved

2. This does not conclude that weighing is an optimal solution. Moreover,
the weighing performed in our case was uniform, using a sigmoid-like
function. This may not be the optimal case, unless the same technique is
tested on all the standard benchmark PDEs.

(a) The frequency at which weights are updated is currently set to 100
iterations. This may not be the optimal choice

(b) Is uniformly changing the weights correct? Can we do a loss-based
adaptive weighing? This would help converge better than
independent weighing (current approach)

3. Joint training PINNs is better than sequential training, especially for the
inverse PDE problem. While we didn’t dive deep into the exact reason
behind this, a simple intuition would be that neural network learning
saturates onto the current task after certain number of training
iterations and using that trained model to train on a different task does
not help the model to really learn it. The term used to describe this
phenomenon is known as, catastrophic forgetting.
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