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Abstract

This work focuses on understanding factual error propagation in open-source medi-
cal large language models (LLMs). Incorrect or unverified information produced
by these models, despite appearing credible, can have significant repercussions
when used in medical settings. Our research assessed open-source medical LLMs,
such as BioMistral, Asclepius, Alpacare, and PMC-LLaMA, and identified no-
table variations in their efficacy. The document offers in-depth details about the
dataset to enhance transparency and replicability. Our goal with this endeavor
is to aid in creating more secure and dependable language models within the
healthcare industry. The github code to reproduce our results can be found in
https://github.com/abhilash-neog/FactCheckingBioLLMs.

1 Introduction

Trust in artificial intelligence systems, particularly in critical domains like healthcare, is essential for
widespread adoption and acceptance. While Large Language Models (LLMs) possess exceptional
generalization and in-context learning capabilities, they are quite prone to generating non-factual or
biased information, also known as the faithfulness problem [3]. In industries reliant on precision and
fact-based communication, such as healthcare and biomedicine, the consequences of factual errors
from medical LLMs are particularly severe. The need for reliable, controllable text generation at
scale is a foundational requirement that affects critical decision-making, patient care, and research
advancements. The wealth of biomedical data, from molecular interactions to clinical trial outcomes,
is profoundly intricate. This complexity demands a level of precision and accuracy that surpasses the
capabilities of standard language models

A recent study on LLMs for summarizing demonstrated that hallucinated content was 25% [1]
of their generated summaries. Moreover, LLMs have also been shown to change along many
personality and behavioral dimensions as a function of both scale and the amount of fine-tuning.
Navigating these risks requires visibility into how the models function. By uncovering the mechanisms
behind such error propagation in medical LLMs [12, 11, 10], researchers can work towards building
more transparent and reliable AI systems. Increased transparency fosters trust among healthcare
professionals and patients, facilitating the integration of AI technologies into clinical workflows.
In addition, advancing our understanding of error propagation in medical LLMs contributes to the
broader scientific knowledge base in artificial intelligence and healthcare informatics. Insights gained
from this research can inform the development of more robust AI systems, drive innovation in
machine learning methodologies, and pave the way for future breakthroughs in medical AI research.

2 Related Work

With the dawn of Large Language Models (LLMs), there has been a growing interest in how capable
these LLMs are and if they can be trusted with the information that they provide us. Factual
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correctness and understanding of where these models have gone wrong are crucial to ensure trust in
these methods. The field of medicine, being as sensitive to misinformation as it is, needs to ensure
that these LLMs can be trusted with their answers and can explain their answers. [14] investigates the
application of various LLMs for summarizing clinical texts. Their holistic evaluations demonstrate
that LLM-generated summaries can, in many cases, rival or even surpass those crafted by human
experts. However, in this regard, [13] evaluates LLMs’ abilities in medical evidence summarizing,
scrutinizing their coherence, factual consistency, and comprehensiveness. The findings from this
research illuminate the critical importance of factual accuracy in medical LLMs, emphasizing the
potential risks associated with non-factual or biased information in healthcare decision-making.

Recent progress in artificial intelligence has led to the development of advanced large language
models (LLMs) such as GPT-4 and Bard. These models offer significant potential in the healthcare
sector, ranging from assistance in clinical documentation to functioning as chatbots for responding to
patient questions [8]. Nonetheless, incorporating LLMs into healthcare requires thoughtful attention,
especially since they stand apart from regulated AI technologies in the critical area of patient care [7].

Medical Large Language Models (LLMs) are at the forefront of transforming healthcare and advanc-
ing medical research. Firstly, they empower healthcare professionals by furnishing evidence-based
recommendations. By scrutinizing extensive medical literature, guidelines, and patient data, they
propose optimal treatment strategies, identify potential drug interactions, and outline diagnostic
routes. Their proficiency in contextual comprehension and deciphering intricate medical terminology
enhances precision in decision-making processes. Moreover, Medical LLMs demonstrate exceptional
prowess in comprehending and synthesizing human-like text. They adeptly extract pertinent details
from clinical notes, research publications, and patient records, thereby streamlining information
retrieval for medical practitioners.

In [6], authors highlighted that without proper human supervision and careful deployment, ap-
plications of generative AI could potentially disseminate misinformation or generate inaccurate
information. Moreover, in [2] they discussed that it is essential to acknowledge the inherent lim-
itations of these technologies, including their propensity for inaccuracies, the dissemination of
misinformation, and the presence of biases. Specifically, tools like ChatGPT are characterized by a
lack of transparency owing to their opaque algorithms, posing challenges for healthcare professionals
in need of comprehensible justifications. Furthermore, biases present in the training datasets can affect
the precision of these tools, which might result in erroneous diagnoses or inappropriate treatment
suggestions.

Hallucinations in large language models (LLMs) pose a challenge to healthcare as they can generate
believable yet unverified or inaccurate information. To address this issue, In [9], a solution called
Med-HALT (Medical Domain Hallucination Test) has been proposed, which introduces a novel
benchmark and dataset specifically designed to assess and mitigate hallucinations in LLMs. Med-
HALT features a diverse multinational dataset sourced from medical examinations worldwide, along
with innovative testing methods including reasoning and memory-based hallucination tests. Leading
LLMs such as Text Davinci, GPT-3.5, LlaMa-2, MPT, and Falcon underwent comprehensive testing
using Med-HALT, revealing significant performance variations. Through detailed analysis of the
dataset, insights are gained that enhance transparency and reproducibility, ultimately aiding in the
development of safer and more dependable language models for healthcare applications.

3 Methodology

3.1 Models

This research study includes four open-source medical LLMs. The comparison of these models is
highlighted in Table 1.

1. BioMistral: BioMistral [5] is collection of open-source pre-trained LLMs for Medical Domains.
It is a suite of Mistral-based further pre-trained open source models suited for the medical domains
and pre-trained using textual data from PubMed Central Open Access (CC0, CC BY, CC BY-SA,
and CC BY-ND). All the models are trained using the CNRS (French National Centre for Scientific
Research).

2. Asclepius: Asclepius [4], on synthetic clinical notes generated from publicly available case
reports extracted from biomedical literature. On GPT-4 and expert evaluation, this model shows
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Table 1: Model Statistics

Name Parameters Backbone
LLM

Training
Dataset

Training
Task

Training
Procedure

BioMistral 7B Mistral PubMed Cen-
tral

QA Pre-trained
from scratch

Asclepius 7B LLaMA Synthetic
Clinical
Notes

QA Instruction-
tuned LlaMA

Alpacare 7B LLaMA MedInstruct-
52k

QA Instruction-
tuned LlaMA

PMC-LLaMA 13B LLaMA MedC-K and
MedC-I

QA Instruction-
tuned LlaMA

comparable performance to the model trained on real clinical notes. The model checkpoints and
data are publicly available via huggingface.

3. Alpacare: Fine-tuning LLaMA-series models with 52,000 varied, machine-created, medical
instruction-following datasets called MedInstruct-52k led to the development of AlpaCare [16].
Detailed experimental evaluations on both broad and medically-focused free-form instruction
tasks demonstrate that AlpaCare excels in medical knowledge and versatility across general and
medical domains, surpassing prior models tuned for instructions.

4. PMC-LLaMA: PMC-LLaMA [15] is the first, open-source medical-specific language model, that
demonstrates superior performance on various medical benchmarks, surpassing ChatGPT and
LLaMA-2 with much fewer parameters.

3.2 Experiments

In this study, we used the following approaches from Med-HALT [9] to evaluate the presence and
impact of hallucinations in generated outputs of medical LLMs.

These assessments evaluate the language model’s ability to reason accurately with medical data and
determine if it can produce outputs that are both logically consistent and factually correct, without
generating false information. It encompasses:

False Confidence Test (FCT): The False Confidence Test (FCT) with 1858 samples presents the
language model with a multiple-choice medical question accompanied by a randomly selected answer
deemed correct. The model is tasked with assessing the accuracy of this answer and providing
thorough explanations for why it is right or wrong, as well as clarifying why the alternative options do
not fit. This test probes the model’s inclination to express undue certainty in its responses, particularly
when it may not have adequate information to do so.

None of the Above (NOTA) Test: In the None of the Above (NOTA) Test with 18866 samples, the
model is given a multiple-choice medical question in which the correct answer has been substituted
with ’None of the above’. The task for the model is to recognize this option and rationalize its choice.
This test evaluates the model’s capability to discern irrelevant or incorrect information.

Fake Questions Test (FQT): This test with 18866 samples entails presenting the model with fake
or nonsensical medical questions to determine whether it can accurately identify and appropriately
respond to such queries.

3.3 Evaluation

Accuracy: Accuracy provides a clear and direct measure of how frequently models produce correct
responses. It is calculated as the ratio of correct predictions to the total number of predictions made
by the model.
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Pointwise Score: This evaluation metric offers a detailed assessment by allocating a positive score
for correct answers and a negative penalty for incorrect ones, mirroring the scoring system often
used in medical exams. For every correct prediction, a score of +1 point is granted, and for each
incorrect prediction, a deduction of -0.25 points is applied. The final Pointwise Score is calculated as
the average of these individual scores. The formula for this is shown in Equation 1

S =
1

100

N∑
i=1

(I(yi = ŷi).Pc + I(yi ̸= ŷi).Pw) (1)

In this formula, the final score (S) is determined by various factors. These factors include the total
number of samples (N ), the true label (yi) and predicted label (ŷi) of each sample, and indicator
functions (I(condition)) which evaluate conditions. Additionally, the points awarded for correct
predictions (Pc) and deducted for incorrect predictions (Pw) contribute to the calculation.

4 Results and Discussion

We carry out few-shot and zero-shot prompting evaluation tests on the selected Medical LLMs and
compare them against some of the non-medical LLMs reported in [9]. The results shown in Table
2 represents the performance of various LLMs on Few-shot (2-shot) Prompting across the three
different categories: FCT (Fact), Fake and Nota (Not Applicable). The evaluation metrics include
Accuracy (in percentage) and the point-wise score.

From the results, we can see that, BioMistral shows relatively lower performance in terms of both,
Accuracy and Score across all the tests with a notable decline in Accuracy for the FCT category at
3.85% and a negative Score of -38.06. The highest Score for BioMistral was observed in the Nota
category at 66.67, indicating better handling of not applicable responses.

Alpacare, on the other hand, demonstrates significantly better performance compared to BioMistral,
particularly in the Fake category, where it achieves an Accuracy of 79.12% and a Score of 13.73. This
model shows the best average Score of 24.06 across all models, indicating more reliable reasoning
capabilities when dealing with hallucination challenges. Similar to Alpacare, PMC-LLaMA also
exhibits strong performance, especially in the FCT and Fake categories, with Accuracies of 37.16%
and 79.55%, respectively. Given, both the models are fine-tuned versions of the base model LlaMA,
we can understand that LlaMA acts as a good foundation model for building Medical LLMs.

Asclepius too records moderate performance. However, most of the models struggle in the FCT and
NOTA tests highlighting the fact that these Medical LLMs struggle when the correct option is hidden
or a perturbed version of the correct answer is presented to the model. While they might have the
correct knowledge most of the time, they tend to easily believe a wrong answer (presented as a correct
answer) as the correct option, indicating lower reasoning capabilities and being highly susceptible to
adversarial attacks. Stronger RLHF or some kind of strong contrastive learning might be useful in
improving the reasoning abilities of these Medical LLMs.

Table 3 reports the performance of the same set of large language models (LLMs) under zero-shot
prompting (without any examples) for the Fake Questions test.

BioMistral exhibits a significant drop in the performance (a 36.43% drop in the accuracy) with very
low accuracy and a negative score, indicating difficulty in generating factual responses without seeing
any examples.

Alpacare has the highest drop in performance (39%). However, it still shows relatively better
performance than BioMistral. Asclepius has the highest accuracy under zero-shot prompting among
all the three models with the lowest performance drop (30.41%). It is interesting to see that Asclepius
has relatively better reasoning capabilities, despite being fine-tuned on synthetic clinical notes data.

The results indicate varying levels of proficiency among the models under few-shot and zero-shot
prompting scenarios. Asclepius consistently outperforms other models, suggesting that it has superior
generalization capabilities that do not heavily rely on example-driven learning. In contrast, BioMistral
and Alpacare exhibit specific strengths and weaknesses that could guide further tuning and training
to enhance their zero-shot reasoning abilities. However, all the three models significantly outperform
GPT-3.5 in terms of accuracy. Pointwise score is not reported for GPT-3.5 so we are unable to
compare against it.
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Table 2: Few-shot (2-shot) Prompting results. Score referes to the Pointwise Score metric. Best
results for each category is in bold; second best results are underlined.

Reasoning FCT Reasoning Fake Reasoning NOTA Average

Model Accuracy Score Accuracy Score Accuracy Score Accuracy Score
GPT-3.5 34.15 33.37 71.64 11.99 27.64 18.01 44.48 21.12

LlaMA-2 13B 1.72 -43.1 89.45 16.13 74.38 128.25 55.18 33.76

LlaMA-2 7B 0.45 -46.12 58.72 8.99 69.49 116.71 42.89 26.53

BioMistral 3.85 -38.06 55.00 8.13 48.27 66.67 35.70 12.245

Asclepius 13.73 -14.79 79.12 13.73 51.06 73.25 47.97 24.06

Alpacare 24.22 9.95 65.61 10.59 23.62 8.53 37.81 9.68

PMC-LLaMA 37.16 25.77 79.55 13.83 24.87 7.31 47.19 15.63

Table 3: Zero-shot Prompting results

Reasoning Fake

Model Accuracy Score
GPT-3.5 7.31 -

BioMistral 18.57 -0.332

Asclepius 48.71 6.67

Alpacare 26.26 1.455

5 Qualitative Analysis

We look into the generated outputs of the Medical LLMs, especially BioMistral, and note some
interesting observations.

5.1 Model hallucinates when asked about non-existent concepts or terms

In Figure 1, the question talks about some disease called “Zylax Syndrome”. However, there is no
such disease. While the model admits this being a mythical disease (which shows that the model is
able to understand that this is completely fictional), it fails to generate a logical answer (here, “I do
not know”, etc.). A probable reason behind this behavior is that, it already commits to the answer
and continues (owing to the causal nature) generating an output, but it becomes illogical as it cannot
relate to anything it has learned or has in the memory

5.2 Model makes up stuff when it has limited knowledge

In the example in Figure 2, while it is true that heartbeat synchronization is not a symptom of TURPS,
model provides an incorrect justification of the others (which are some fictional symptoms) being a
symptom. This is an interesting example, where, despite this being an in-domain question or that talks
about an existent disease, the model still hallucinates or provide an incorrect answer/justification.

On prompting the model to verify whether it has complete knowledge about the disease, this is what
we get:

Prompt:
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Figure 1: Complete hallucination when asked about a non-existent concept

‘‘The symptoms of transurethral resection of the prostate syndrome are ’’

The output of the model was:

The symptoms of transurethral resection of the prostate syndrome are
1) urinary retention, 2) dysuria, and 3) hematuria. Urinary retention is a
common complication after TURP, with an incidence ranging from 0 to 45% .
Dysuria is also a frequent postoperative symptom, occurring in up to 68%
of patients . Hematuria is another common complication that occurs in
approximately 7–9% of patients undergoing TURP .

The answer provided is partially correct but incomplete. The symptoms mentioned in the answer are
common complications after TURP, but they are not the specific symptoms of TURP syndrome.

5.3 Model has the knowledge but fails to answer the question

In the example in Figure 3, Dicyclomine is an anticholinergic drug. The model does know it correctly,
as can be seen from it’s explanations. However, the question asks which is NOT an anticholinergic
drug. The model interprets the question wrongly, thus, leading to factual incorrect output generation.
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Figure 2: Model hallucinates when it has limited knowledge

Figure 3: Model has the knowledge but gets confused with the question
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6 Conclusion and Future Work

This study enhances our knowledge of hallucination phenomena in large language models (LLMs) in
the medical field by using open source medical LLMs for assessing and addressing these problems.
Our comparative evaluation of various models, such as BioMistral, Asclepius, Alpacare, and PMC-
LLaMA, indicates significant potential for further enhancements.

We can improve reasoning skills through Retrieval Augmented Generation (RAG) which is a multi-
faceted process that revolves around seamlessly integrating retrieved knowledge into the generation
process to augment reasoning capabilities. This methodology not only focuses on generating text but
also on leveraging external knowledge sources to enhance the quality and coherence of the generated
content. By incorporating retrieved information into the generation pipeline, RAG facilitates a more
nuanced and contextually informed approach to reasoning, enabling systems to produce more accurate
and insightful outputs.

In the realm of medical Large Language Models (LLMs), understanding and mitigating factual errors
is paramount. Utilizing interpretability techniques becomes essential in this context, as it allows
researchers and developers to delve into the inner workings of these models and comprehend why
such errors occur. By gaining insights into the decision-making processes of LLMs, practitioners can
identify potential pitfalls and biases, leading to more robust and reliable systems. This approach not
only enhances the interpretability of LLMs but also paves the way for targeted improvements and
optimizations, ultimately fostering greater trust and confidence in these AI-driven medical tools.
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