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Can we build a Foundation Model that can 

generalize across different lake ecosystems 

with different variables  and missing values?
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MOMENT (2024)

MOIRAI (2024)

CHRONOS (2024)
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Sparse and Irregular Data

All existing FMs assume fully observed data

❌

❌

❌
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Multivariate and multi-depth

 Multivariate FMs treat each depth as 
independent variable

❌ ❌

❌



Contrastive Loss

Lake Foundation Model (LakeFM) - An Overview
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Lake Foundation Model (LakeFM) - An Overview
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✓ Variable Context and Prediction Length

✓ Variate-wise Distribution
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Lake Foundation Model (LakeFM) - An Overview
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Lake Foundation Model (LakeFM) - Tokenization & Embedding
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Lake Foundation Model (LakeFM) - Tokenization & Embedding
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✓ Irregular Grid in depth, 
time & variates with 
missing values



Lake Foundation Model (LakeFM) - Findings (I) - Increasing Horizon Length
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Lake Foundation Model (LakeFM) - Findings (I) - Increasing Horizon Length

22Key Observation : Overall, LakeFM maintains stable performance across increasing horizon lengths
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Lake Foundation Model (LakeFM) - Findings (II) - Incomplete Data (Variables)
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Lake Foundation Model (LakeFM) - Findings (II) - Incomplete Data (Variables)
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Lake Foundation Model (LakeFM) - Findings (II) - Incomplete Data (Variables)
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+ DO

- DO

Key Observation : Removing DO from inputs  increases uncertainty in predictions of water temperature



Lake Foundation Model (LakeFM) - Findings (II) - Incomplete Data (Variables)
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+ Temp

- Temp

Key Observation : Water temperature is a critical variable. Removing it degrades all predictions.



Lake Foundation Model (LakeFM) - Findings (III) - Incomplete Data (Depth)
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Lake Foundation Model (LakeFM) - Findings (III) - Incomplete Data (Depth)
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Key Observation : Water temperature predictions remain stable even without shallow-layer variables



Lake Foundation Model (LakeFM) - Findings (III) - Incomplete Data (Depth)
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Key Observation : In contrast, DO predictions cannot rely on deeper-layer variables, indicating stronger vertical variability 
along the water column



Lake Foundation Model (LakeFM) - Findings (III) - Incomplete Data (Depth)
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Key Observation : In general, water temperature remains stable and is predictable using either shallow or deeper layers, while 
DO dynamics are tightly coupled to the local depth.



Lake Foundation Model (LakeFM) - Findings (IV) - Performance Comparison
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Key Observation : 

Chronos struggles with 
missing data, leading to 
context-dependent 
instability, whereas 
LakeFM remains stable 
under the same conditions

Comparing LakeFM predictions (on a horizon window of 30 timesteps) with 
Chronos Foundation Model on Lake BARC at Depth 0.5m



Lake Foundation Model (LakeFM) - Ongoing Work
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❖ Visualization of learned lake embeddings

❖ Analyzing seasonal clustering patterns in lake representations

❖ Analyzing temporal trajectories of lake representations over time

❖ Geographic structure emerging in embedding space

Lake representation analysis

❖ Visualization of learned variable embeddings

❖ Analyzing variable similarities inferred from embedding clusters

❖ Empirical verification of embedding-based variable similarities

Variable representation analysis
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