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® Different subset of variables available in different ecosystems
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Transfer Learning ?

Aquatic Ecosystem 2
® Different subset of variables available in different ecosystems Well observed

® Large amounts of missing data (e.g., Falling Creeks Reservoir, VA, has 70% missing data, 2017-04 to 2022-10)
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Existing Foundation Models
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Challenges with existing Foundation Models
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Lake Foundation Model (LakeFM) - An Overview
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Lake Foundation Model (LakeFM) - An Overview
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Lake Foundation Model (LakeFM) - An Overview
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Lake Foundation Model (LakeFM) - Tokenization & Embedding
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Lake Foundation Model (LakeFM) - Tokenization & Embedding
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Lake Foundation Model (LakeFM) - Tokenization & Embedding
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Lake Foundation Model (LakeFM) - Findings (l) - Increasing Horizon Length
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Lake Foundation Model (LakeFM) - Findings (l) - Increasing Horizon Length
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Key Observation : Overall, LakeFM maintains stable performance across increasing horizon lengths
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Lake Foundation Model (LakeFM) - Findings (ll) - Incomplete Data (Variables)
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Lake Foundation Model (LakeFM) - Findings (ll) - Incomplete Data (Variables)
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Lake Foundation Model (LakeFM) - Findings (ll) - Incomplete Data (Variables)
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WaterTemp_C

Lake Foundation Model (LakeFM) - Findings (ll) - Incomplete Data (Variables)

ME : 30 timesteps ahead forecast, at Depth 4.00m (shaded = 95% Cl)
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Lake Foundation Model (LakeFM) - Findings (ll) - Incomplete Data (Variables)

ME : 30 timesteps ahead forecast, at Depth 4.00m (shaded = 95% Cl)
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Key Observation : Water temperature is a critical variable. Removing it degrades all predictions. 27



Lake Foundation Model (LakeFM) - Findings (lll) - Incomplete Data (Depth)
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Key Observation : Water temperature predictions remain stable even without shallow-layer variables

Lake Foundation Model (LakeFM) - Findings (lll) - Incomplete Data (Depth)

Water Temp Predictions @ 0.5 m using full-depth history
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Water Temp Predictions @ 0.5 m using only deeper-depth history
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Lake Foundation Model (LakeFM) - Findings (lll) - Incomplete Data (Depth)

Water DO Predictions @ 0.5 m using full-depth history
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Water DO Predictions @ 0.5 m using only deeper-depth history
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Key Observation : In contrast, DO predictions cannot rely on deeper-layer variables, indicating stronger vertical variability

along the water column
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Lake Foundation Model (LakeFM) - Findings (lll) - Incomplete Data (Depth)

Water Temp Predictions @ 5.5 m using full-depth history
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Water DO Predictions @ 5.5 m using full-depth history

2019-05 4

25

3.0

3.5

4~ Pred @ depth=5.50 norm
~@- GT @ depth=5.50
95% Cl @ depth=5.50

4.0

4.5

5.0

5.5

6.0

o m n ~ o - o 0

° ° 2 ° ° o ° 2

«© © o © 0 0 o L

=2 2 = = = = = =

o o o o o o o o

~ ~N ~N ~N o~ ~N o~ ~N
Date

2019-05 4

6.5

Water Temp Predictions @ 5.5 m using only shallow-depth history
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Key Observation : In general, water temperature remains stable and is predictable using either shallow or deeper layers, while

DO dynamics are tightly coupled to the local depth.
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Lake Foundation Model (LakeFM) - Findings (IV) - Performance Comparison

Comparing LakeFM predictions (on a horizon window of 30 timesteps) with
Chronos Foundation Model on Lake BARC at Depth 0.5m
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Key Observation :

Chronos struggles with
missing data, leading to
context-dependent
instability, whereas
LakeFM remains stable
under the same conditions
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Lake Foundation Model (LakeFM) - Ongoing Work

Lake representation analysis

Y7
°e

Visualization of learned lake embeddings
% Analyzing seasonal clustering patterns in lake representations
% Analyzing temporal trajectories of lake representations over time
s Geographic structure emerging in embedding space
Variable representation analysis
% Visualization of learned variable embeddings
% Analyzing variable similarities inferred from embedding clusters

% Empirical verification of embedding-based variable similarities
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